ООО «Газпром нефтехим Салават»

•	7 <u> </u>		<i>C</i>	$(VD\Pi\Gamma_{-}\Omega\tau)$
_)	правление экологическои	промышленнои	безопасности и охраны труда	. (ソラロカロフェ)
_	in publication of the state of		The state of the s	(

Информационный бюллетень

Дата	Точки отбора проб атмо-	Результаты производ	дственног	о экологического	Режим НМУ	Принятые меры
	сферного воздуха в жилой	К	онтроля			
	зоне (ЖЗ) и на границе са-					
	нитарно-защитной зоны	Определяемый пока-	пдк,	Факт, мг/м3		
	(СЗЗ) Общества	затель	мг/м³			
	, , ,					

20.12.	Давление 996,0 гПа, направ-				C 19.12.2024	- принятие дополнитель-
2024	ление воздушного потока 315 град (северо-западное), ско-	Диоксид серы, макс. раз.	0,5	0,0162 ± 0,0040	20:00:00 по 20.12.2024	ных мер не требуется.
	рость воздушного потока 0,7 м/с, относительная влажность 90,0 %, температура -5,5 °C.	Дигидросульфид (серово- дород), макс. раз.	0,008	$0,0031 \pm 0,0008$	20:00:00 НМУ не ожидается.	
	7 7 1 31	Азота оксид, макс. раз.	0,4	0,025 ± 0,006	С 20.12.2024 20:00:00 по	
	Контроль по графику: 1. ЖЗ – пересечение улиц	Азота диоксид, макс. раз.	0,2	0,032 ± 0,010	21.12.2024	
	Первомайская/Строителей - 1 школа	Аммиак, макс. раз.	0,2	0,0147 ± 0,0035	20:00:00 НМУ не ожидается.	
	Время отбора проб: 08:45-09:15	Концентрация метана (СН4), макс. раз.	50 (ОБУВ)	1,35 ± 0,35		
		Концентрация углеводородов, не содержащих метан, макс. раз.	-	менее 0,09		
		Углерода оксид, макс. раз.	5	0,70 ± 0,17		
		Бензол, макс. раз.	0,3	менее 0,01		
		Хлорбензол, макс. раз.	0,1	менее 0,01		
		Этилбензол, макс. раз.	0,02	0,0103 ± 0,0026		
		Толуол, макс. раз.	0,6	0,0214 ± 0,0045		
		Концентрация м-п-ксилола, макс. раз.	0,2	0,062 ± 0,013		
		о-Ксилол, макс. раз.	0,3	менее 0,01		

IT	Carre			
	Стирол, макс. раз.	0,04	0,0164 ± 0,0045	
	Альфа-метилстирол, макс. раз.	0,04	менее 0,002	
	Предельные углеводороды C1-C10 (суммарно, в пересчете на углерод), макс. раз.	-	1,55 ± 0,40	
	Этен, макс. раз.	3	менее 1,0	
	Пропен, макс. раз.	3	менее 1,0	
	Бутен-1, макс. раз.	3	менее 1,0	
	Этан, макс. раз.	50 (ОБУВ)	менее 1,0	
	Пропан, макс. раз.	-	менее 1,0	
	Бутан, макс. раз.	200	менее 1,0	
	Пентан, макс. раз.	100	менее 1,0	

Давление 996,0 гПа, направление воздушного потока	Диоксид серы, макс. раз.	0,5	$0,024 \pm 0,006$	
315 град (северо-западное), скорость воздушного потока 0,6 м/с, относительная влаж-	Дигидросульфид (сероводород), макс. раз.	0,008	менее 0,002	
ность 90,0 %, температура -5,1 °C.	Азота оксид, макс. раз.	0,4	0,0159 ± 0,0040	
	Азота диоксид, макс. раз.	0,2	$0,026 \pm 0,008$	
2. Ж3 – Школьный переулок	Аммиак, макс. раз.	0,2	$0,0082 \pm 0,0019$	
Время отбора проб: 09:30-10:00	Концентрация метана (СН4), макс. раз.	50 (ОБУВ)	$1,26 \pm 0,30$	
	Концентрация углеводородов, не содержащих метан, макс. раз.	-	менее 0,09	
	Углерода оксид, макс. раз.	5	0,40 ± 0,10	
	Бензол, макс. раз.	0,3	0.0171 ± 0.0035	
	Хлорбензол, макс. раз.	0,1	менее 0,01	
	Этилбензол, макс. раз.	0,02	0,0109 ± 0,0028	
	Толуол, макс. раз.	0,6	$0,036 \pm 0,008$	
	Концентрация м-п-ксилола, макс. раз.	0,2	0,0206 ± 0,0045	
	о-Ксилол, макс. раз.	0,3	менее 0,01	

Стирол, макс. раз.	0,04	менее 0,01	
Альфа-метилстирол, макс. раз.	0,04	менее 0,002	
Этен, макс. раз.	3	менее 1,0	
Пропен, макс. раз.	3	менее 1,0	
Бутен-1, макс. раз.	3	менее 1,0	
Этан, макс. раз.	50 (ОБУВ)	менее 1,0	
Пропан, макс. раз.	-	менее 1,0	
Бутан, макс. раз.	200	менее 1,0	
Пентан, макс. раз.	100	менее 1,0	
Фенол, макс. раз.	0,01	менее 0,003	
Формальдегид, макс. раз.	0,05	менее 0,01	
Углеводороды предельные C12-C19, макс. раз.	1	менее 0,8	
Предельные углеводороды C1-C10 (суммарно, в пересчете на углерод), макс. раз.	-	1,86 ± 0,45	

Давление 1004,0 гПа, направление воздушного потока	Диоксид серы, макс. раз.	0,5	0,0181 ± 0,0045	
225 град (юго-западное), скорость воздушного потока 2,3 м/с, относительная влажность	Дигидросульфид (серово- дород), макс. раз.	0,008	0,0027 ± 0,0007	
92,0 %, температура -10,6 °C.	Азота оксид, макс. раз.	0,4	0,089 ± 0,021	
2 Chn	Азота диоксид, макс. раз.	0,2	0,074 ± 0,022	
3. C33 – в районе садоводческого некоммерческого това-	Аммиак, макс. раз.	0,2	0,0188 ± 0,0045	
рищества №7 РМЗ (СНТ № 7) Время отбора проб:	Концентрация метана (СН4), макс. раз.	50 (ОБУВ)	1,26 ± 0,30	
20:15-20:45	Концентрация углеводородов, не содержащих метан, макс. раз.	-	менее 0,09	
	Углерода оксид, макс. раз.	5	1,12 ± 0,26	
	Бензол, макс. раз.	0,3	$0,0178 \pm 0,0040$	
	Хлорбензол, макс. раз.	0,1	менее 0,01	
	Этилбензол, макс. раз.	0,02	0,0133 ± 0,0035	
	Толуол, макс. раз.	0,6	0,041 ± 0,009	
	Концентрация м-п-ксилола, макс. раз.	0,2	0,036 ± 0,008	
	о-Ксилол, макс. раз.	0,3	менее 0,01	
	Стирол, макс. раз.	0,04	0,019 ± 0,005	

	Альфа-метилстирол, макс. раз.	0,04	менее 0,002	
	Этен, макс. раз.	3	менее 1,0	
	Пропен, макс. раз.	3	менее 1,0	
	Этан, макс. раз.	50 (ОБУВ)	менее 1,0	
	Пропан, макс. раз.	-	менее 1,0	
	Бутан, макс. раз.	200	менее 1,0	
	Пентан, макс. раз.	100	менее 1,0	
	Фенол, макс. раз.	0,01	менее 0,003	
	Формальдегид, макс. раз.	0,05	менее 0,01	
Дополнительный ко (при объявлении ре: НМУ и обращениях	жима			
лей):				
Жалобы от населен	ия:			
отсутствовали				